Abstract

Biocompatibility of the surfaces of titanium dental implants can be improved by covering them with calcium phosphate crystals, which makes the surface bioreactive. Possibly the most effective bioreactive foreign material that improves osteointegration and adsorption/binding of extracellular proteins and structural proteins is crystalline octacalcium phosphate {2×[Ca4H(PO4)3·2.5H2O] or Ca8(HPO4)2(PO4)4·5H2O, OCP}. In this work the building up of OCP crystals on the surface of TiO2 anatase is examined in the process of heterogeneous nucleation from constant-composition solutions of CaCl2 and KH2PO4 at constant pH (pH 6.8) and ionic strength (I=0.05 M), in dense titania suspensions. Constant relative supersaturation with regard to the calcium phosphate formation was maintained by the controlled addition of the reagent solutions, according to the desired speed of crystallization. The surface saturation value of calcium ion adsorption was measured by detecting the pH decrease during CaCl2 addition in a separate experiment. The OCP crystallization was also conducted on the surface of an evaporated titanium layer, and on titanium metal disks. The surface of the disks was modified by the laser ablation method in order to increase the oxide layer thickness. Calcium phosphate crystals formed on the surface of the modified titanium disks, but not in an appreciable amount on the surface of the evaporated titanium layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.