Abstract

The contribution of two algae species, Microcystis aeruginosa (M. aeruginosa) and Cyclotella meneghiniana (C. meneghiniana), to the formation of nitrosamines (NAs) during chloramination in drinking water treatment was investigated. A variety of factors including contact time, algae cell concentration, chloramine dosages, and algal cell components (cell debris (CD), intracellular organic matter (IOM), and extracellular organic matter (EOM)) were evaluated for influencing the formation of different NAs, such as N-Nitrosodiethylamine (NDMA), N-Nitrosomethylethylamine (NMEA), N-Nitrosodibutylamine (NDBA), N-Nitrosodi-n-propylamine (NDPA), and N-nitrosopyridine (NPyr). In addition, NAs formation from Chlorophyll-a and Microcystin-LR (MC-LR) after chloramination was studied. These results showed that the increase of reaction time and algae cell concentration enhanced the formation potential of five types of NAs from both algae species, except for the NDMA formation from C. meneghiniana, which increased first and then decreased with increased reaction time. The generation of NDMA was detected as the dominated type of NAs. The formation of total NAs from both algae species followed same pattern of increasing first and then decreasing with the increase of chloramine dosage. The largest NAs formation potential (NAsFP) of M. aeruginosa and C. meneghiniana showed at 1.5 mM and 1.0 mM monochloramine, respectively. Moreover, the impacts of algae cellular components on the formation potential of NAs followed the order of IOM > EOM ≫ CD and IOM ≫ CD > EOM for M. aeruginosa and C. meneghiniana, respectively, indicating that IOM was the main source of NAs precursors for both algae. Furthermore, EEM analysis before and after chloramination confirmed that the soluble microbial products (SMPs) and protein-like substances were the main cellular components that contributed to NAs formation for both algae. The NAs formation potential of Microcystin-LR was much higher than that of Chlorophyll-a chloramination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.