Abstract
The extremely altered topmost surface layer, known as the white layer, formed in a medium-carbon low-alloy steel as result of impacts by angular 10–12 mm granite particles during the slurry erosion process is comprehensively investigated. For this purpose, the characteristics, morphology, and formation mechanism of this white layer are described based on the microstructural observations using optical, scanning and transmission electron microscopies as well as nanoindentation hardness measurements and modelling of surface deformation. The white layer exhibits a nanocrystalline structure consisting of ultrafine grains with an average size of 200 nm. It has a nanohardness level of around 10.1 GPa, considerably higher than that of untempered martensitic bulk material (5.7 GPa) achieved by an induction hardening treatment. The results showed that during the high-speed slurry erosion process, solid particle impacts brought forth conditions of high strain, high strain rate, and multi-directional strain paths. This promoted formation of a cell-type structure at first and later, after increasing the number of impacts, development of subgrains following by subgrain rotation and eventually formation of a nanocrystalline structure with ultra-high hardness. The model confirmed that high strain conditions - much higher than required for the onset of plastic deformation - can be achieved on the surface resulting in severe microstructural and property changes during the slurry erosion test.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have