Abstract

Formation of nine N-nitrosamines has been investigated when seven different source waters representing various qualities were each treated with eleven bench-scale disinfection processes, without addition of nitrosamine precursors. These disinfection treatments included chlorine (OCl-), chloramine (NH2Cl), chlorine dioxide (ClO2), ozone (O3), ultraviolet (UV), advanced oxidation processes (AOP), and combinations. The total organic carbon (TOC) of the seven source waters ranged from 2 to 24 mg x L(-1). The disinfected water samples and the untreated source waters were analyzed for nine nitrosamines using a solid phase extraction and liquid chromatography-tandem mass spectrometry method. Prior to any treatment, N-nitrosodimethylamine (NDMA) was detected ranging from 0 to 53 ng x L(-1) in six of the seven source waters, and its concentrations increased in the disinfected water samples (0-118 ng x L(-1)). N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMor), and N-nitrosodiphenylamine (NDPhA) were also identified in some of the disinfected water samples. NDPhA (0.2-0.6 ng x L(-1)) was formed after disinfection with OCl-, NH2Cl, O3, and MPUV/OCl-. NMEA was produced with OCl- and MPUV/OCl-, and NMor formation was associated with O3. In addition, UVtreatment alone degraded NDMA; however, UV/ OCl- and AOP/OCl- treatments produced higher amounts of NDMA compared to UV and AOP alone, respectively. These results suggest that UV degradation or AOP oxidation treatment may provide a source of NDMA precursors. This study demonstrates that environmental concentrations and mixtures of unknown nitrosamine precursors in source waters can form NDMA and other nitrosamines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.