Abstract

Tannic acid induces aggregation and formation of multilamellar vesicles when added to preparations of small unilamellar vesicles, specifically those containing phosphatidylcholine. Aggregation and clustering of vesicles was demonstrated by cryo-electron microscopy of thin films and by freeze-fracture technique. Turbidity measurements revealed an approximately one-to-one molar ratio between tannic acid and phosphatidylcholine necessary for a fast and massive aggregation of the small unilamellar vesicles. When tannic acid-induced aggregates were dehydrated and embedded for conventional thin-section electron microscopy, multilamellar vesicles were retrieved in thin sections. It is concluded from morphological studies, as well as previous tracer studies, that tannic acid, at least to a great extent, prevents the extraction of phosphatidylcholine. Multilamellar vesicles were also observed in tannic acid-treated vesicles prepared from total lipid extracts from either rabbit or rat hearts. Substantially more multilamellar vesicles were retrieved in the rabbit vesicle preparation. This difference can probably be explained by the difference in the proportion of the plasmalogen phosphatidylcholine, and possibly the content of sphingomyelin, in lipid extracts of rabbit and rat hearts. It is concluded that the dual effect (reduced extraction and aggregation) of tannic acid on phosphatidylcholines should be taken into consideration when tannic acid is used in tissue preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.