Abstract

At high temperatures, pentaethylene glycol monododecyl ether (C12E5) in D2O forms a swollen lamellar phase. This letter reports the shear-induced multilamellar vesicle (MLV) formation in a sample that contains 40 wt % C12E5 dissolved in D2O at 55 °C. This transition has been investigated by time-resolved rheo-nuclear magnetic resonance, rheo small-angle neutron scattering, and rheometry. The typical transient viscosity behavior of MLV formation has been discovered at 1 s(-1). For the first time, it has been found that MLVs are not stable over time when subjected to high shear rates. Our results show that the MLV stability is confined in a narrow region in the range 1-10 s(-1) shear rates. This is not observed for other CnEm surfactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.