Abstract
Ni-catalyzed decomposition of methane at high temperatures was examined by using a thermogravimetric apparatus. The catalyst (10 wt.% Ni supported on spherical alumina) gave quite a high carbon nanotube (CNT) yield at the temperatures below 680 °C. At > 700 °C, however, carbon formation rate decreased with increasing the reaction temperature. Temperature-programmed reaction also showed the maximum CNT growth rate at ~ 690 °C. This result ruled out the possibility that the apparent negative activation energy is caused by sintering of Ni particles. Detailed examination on the kinetic expression led us to a conclusion that the dissolution of carbon atoms formed by dissociation of methane into bulk of the nickel particles is the rate-determining step at high temperatures, while methane adsorption is the rate-determining step at lower temperatures. This idea also explains the fact that the carbon yield drastically decreased at high temperatures. The CNTs formed at these temperatures had thinner walls than those formed at lower temperatures. The latter fact also supports the idea that the solubility of carbon in the nickel particles decreases at high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.