Abstract

Moiré superlattices (MSLs) of two-dimensional (2D) van der Waals materials have attracted considerable attention in recent years; however, studies of bottom-up growth of twisted MSL structures via solution-processed crystallization are rarely reported. Through facile one-pot solvothermal synthesis, here we demonstrate a nonclassical surfactant/nanosheet-co-mediated crystallization pathway for formation of MSL structures with two models of SnS2 and SnSe2. Our experimental results reveal that attractive interactions between 2D inorganic building blocks and surfactant organic molecules during the initial stage of crystallization are crucial to drive surfactant-covered nanosheets to crystallize into molecule-intercalated nanosheet aggregates. Under the high-pressure condition, further crystallograpic fusion can occur if the reaction time is prolonged, which alters the interactions of adjacent layers during the coalescence of small-grain-size 2D domains due to insertion of foreign molecules, leading to interlayer rotations. This work uncovers an interesting organic-inorganic cocrystallization growth mode and provides a novel pathway for large-scale fabrication of MSLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call