Abstract

AbstractA new mechanism is presented to model the relaxation phenomena in pentagonal nanorods (PNRs) – elongated multiple twinned crystals. It is demonstrated that a shell possessing crystal mismatch with respect to the PNR core region will reduce the internal energy of the PNR associated with wedge disclinations of strength 7°20′ lying along the PNR axis. We predict the existence of an optimal magnitude for core/shell crystal lattice mismatch and an optimal shell thickness providing maximum energy release for this mechanism of mechanical stress relaxation. The considered relaxation mechanism can be realized by the diffusion of impurities in the shell region without change of the PNR radius or by growth of a thin mismatched shell layer with the corresponding thickening of PNR. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.