Abstract
Abstract We present Submillimeter Array observations of seven massive molecular clumps that are dark in the far-infrared for wavelengths up to 70 μm. Our 1.3 mm continuum images reveal 44 dense cores, with gas masses ranging from 1.4 to 77.1 M ⊙. Twenty-nine dense cores have masses greater than 8 M ⊙ and the other 15 dense cores have masses between 1.4 and 7.5 M ⊙. Assuming the core density follows a power law in radius ρ ∝ r −b , the index b is found to be between 0.6 and 2.1, with a mean value of 1.3. The virial analysis reveals that the dense cores are not in virial equilibrium. CO outflow emission was detected toward six out of seven molecular clumps and associated with 17 dense cores. For five of these cores, CO emissions appear to have line wings at velocities of greater than 30 km s−1 with respect to the source systemic velocity, which indicates that most of the clumps harbor protostars and thus are not quiescent in star formation. The estimated outflow timescale increases with core mass, which likely indicates that massive cores have longer accretion timescales than less massive ones. The fragmentation analysis shows that the masses of low-mass and massive cores are roughly consistent with thermal and turbulent Jeans masses, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.