Abstract

How rapidly collapsing parsec-scale massive molecular clumps feed high-mass stars, and how they fragment to form OB clusters, have been outstanding questions in the field of star-formation. In this work, we report the resolved structures and kinematics of the approximately face-on, rotating massive molecular clump, G33.92+0.11. Our high resolution Atacama Large Millimeter/submillimeter Array (ALMA) images show that the spiral arm-like gas overdensities form in the eccentric gas accretion streams. First, we resolved that the dominant part of the $\sim$0.6 pc scale massive molecular clump (3.0$^{+2.8}_{-1.4}$$\cdot$10$^{3}$ $M_{\odot}$) G33.92+0.11 A is tangled with several 0.5-1 pc size molecular arms spiraling around it, which may be connected further to exterior gas accretion streams. Within G33.92+0.11 A, we resolved the $\sim$0.1 pc width gas mini-arms connecting with the two central massive (100-300 $M_{\odot}$) molecular cores. The kinematics of arms and cores elucidate a coherent accretion flow continuing from large to small scales. We demonstrate that the large molecular arms are indeed the cradles of dense cores, which are likely current or future sites of high-mass star formation. Since these deeply embedded massive molecular clumps preferentially form the highest mass stars in the clusters, we argue that dense cores fed by or formed within molecular arms play a key role in making the upper end of the stellar and core mass functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.