Abstract
Inorganic fullerene-like (IF) solid lubricant particles based on MoS2 or WS2 have recently gained attention in various tribological applications, for instance incorporated in coatings, porous materials, greases and dispersed in oils. However, their effect in oil can be limited often due to inadequate penetration into the contact zone. Meanwhile, tribopolymerization of monomer additives in oil have proven to be efficient to reduce wear, but without significantly reducing the friction. This investigation combines these two lubrication techniques in order to form particle/polymer composite tribofilms, aimed to give low friction and wear in high-pressure sliding contacts. A cyclic amine, caprolactam, was used as the monomer together with IF as well as normal 2H WS2 particles. Zn-DTP was used as a reference antiwear additive and poly-alfa-olefin (PAO) was used as the base oil. Reciprocal ball-on-flat sliding test results found that monomer plus particles reduced the friction by 10–50%, depending on sliding speed and type of particles, compared with particles or monomer alone. And the scattering between different tests was also considerably lower. The wear rate was also substantially reduced to a level similar to that of Zn-DTP. The particle/polymer composite tribofilms were generally much larger than the actual contact area and its thickness varied from below a few nanometres in the contact centre to several micrometers in the outer parts. Consequently, the reduced friction is believed to come from two effects: one being a trapping of particles in the contact zone, which reduces the boundary friction level; and the other a shift in lubrication regime towards EHD-lubrication due to reduced contact pressures accompanied with the formation of the composite tribofilm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.