Abstract

The efficacy of inorganic fullerene-like (IF) tungsten disulfide (WS2) nanoparticles as engine oil friction modifier additive was investigated using a high-stroke reciprocating piston ring–cylinder bore bench test system. Frictional characteristics of various IF-WS2 nanoparticle concentrations in mineral oil were experimentally analyzed in simulated engine conditions controlling oil temperature, speed, and normal load. Though the effect of IF-WS2 nanoparticles on piston ring and cylinder bore friction was minor in low concentrations, after a running period in a mixed lubrication regime with 10% additive, a considerable reduction in friction coefficient was observed when the IF-WS2 formulated oil was used. This reduction remains to some extent with reference mineral oil after solvent cleaning of the mating components. The results show that a thin tribofilm gradually forms on the piston ring and the cylinder bore surfaces, reducing the friction coefficient in a mixed lubrication regime. However, in order to obtain the friction reduction there seems to be a threshold in the concentration of IF-WS2 in mineral oil and film development period. The effects of lubrication regime, contact load, speed, and surface roughness on tribofilm formation are also discussed. The presence of WS2 tribofilm formed on the piston ring and the cylinder bore surfaces was further verified using Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.