Abstract
The ability to shape our motor behavior rapidly in everyday activity, such as when walking on sand, suggests the existence of long-term motor memories. It was suggested recently that this ability is achieved by the retrieval of previous motor actions and by enhanced relearning capacity. Little is known about the neural mechanisms that underlie these memory processes. We studied the modularity in long-term motor memories in the context of locomotor adaptation using resting-state fMRI. We show that retrieval and relearning effects are associated with separate locomotor control networks and that intersubject variability in learning and in the generation of motor memories could be predicted from baseline resting-state connectivity in locomotor-related networks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have