Abstract
A large fraction of 100-km-class low-inclination objects in the classical Kuiper Belt (KB) are binaries with comparable mass and wide separation of components. A favored model for their formation was capture during the coagulation growth of bodies in the early KB. Instead, recent studies suggested that large objects can rapidly form in the protoplanetary disks when swarms of locally concentrated solids collapse under their own gravity. Here we examine the possibility that KB binaries formed during gravitational collapse when the excess of angular momentum prevented the agglomeration of available mass into a solitary object. We find that this new mechanism provides a robust path toward the formation of KB binaries with observed properties, and can explain wide systems such as 2001 QW322 and multiples such as (47171) 1999 TC36. Notably, the gravitational collapse is capable of producing 100% binary fraction for a wide range of the swarm's initial angular momentum values. The binary components have similar masses (80% have the secondary-over-primary radius ratio >0.7) and their separation ranges from ~1,000 to ~100,000 km. The binary orbits have eccentricities from e=0 to ~1, with the majority having e<0.6. The binary orbit inclinations with respect to the initial angular momentum of the swarm range from i=0 to ~90 deg, with most cases having i<50 deg. Our binary formation mechanism implies that the primary and secondary components in each binary pair should have identical bulk composition, which is consistent with the current photometric data. We discuss the applicability of our results to the Pluto-Charon, Orcus-Vanth, (617) Patroclus-Menoetius and (90) Antiope binary systems.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have