Abstract

The intermolecular interaction in dimethyl sulfoxide (DMSO), which is a strong solvent, and its manifestation in vibrational spectra are studied by means of Raman spectroscopy and ab initio calculations. The optimal structure and vibrational spectra of DMSO monomer, dimer, and trimer, as well as complexes of DMSO with water molecules, are calculated, and the potential energy distribution (PED) analysis is carried out. In the Raman spectra of DMSO and its water solutions, a red shift of the S=O stretching band due to the conventional hydrogen bonding and a blue shift of the C–H stretching band due to non-classical hydrogen bonding are detected. The MEP surfaces (changes in the charge distribution) of DMSO monomer, dimer, and DMSO–water cluster are plotted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.