Abstract

The deposition of hematite nanoparticles (22nm and 29nm in diameter) on negatively charged polystyrene microspheres (820nm in diameter) was studied by micro-electrophoretic measurements and AFM. The influence of ionic strength, varied between 10−4 and 10−2M, was determined. Initially, the electrophoretic mobility change of microspheres upon the addition of controlled amount of hematite nanoparticles were measured. These dependencies were quantitatively interpreted in terms of the general electrokinetic model. This allowed to determine the coverage of nanoparticles on microspheres under in situ conditions, which increased with ionic strength attaining 0.35 for the ionic strength of 10−2M and 29 in diameter hematite particles. This effect, attributed to the decreasing range of lateral electrostatic repulsion among deposited particles, was accounted for by the random sequential adsorption model. However, the coverages attained for lower ionic strength exceeded the theoretical predictions. This effect was interpreted in terms of an additional electrostatic screening due to polymeric chains present at the microparticle surface. The acid base properties of the hematite monolayers were also acquired by applying thorough micro-electrophoretic measurements. The obtained results confirmed a feasibility of preparing hematite nanoparticle monolayers on polymeric carrier microspheres having well-defined coverage and structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.