Abstract
Seeded growth is one of the most successful and well-studied methods of making nanorods of face-centered cubic (FCC) metals such as Ag, Au, Pt, etc. In this method separately prepared tiny metal seeds (typically smaller than 10 nm) are added to a growth solution containing metal precursor, a weak reducing agent such as ascorbic acid, and a capping agent. The mechanisms that lead to specific shape selection and growth of nanoparticles, in this method, are poorly understood. We propose a mechanism of nanorod growth based on the physical phenomenon of twinning and develop a population balance based model. Briefly, on mixing with growth solution, the seeds start growing isotropically, during which some of the seeds undergo twinning and transform their growth habit to form nanorod nuclei. The nanorod nuclei grow along one dimension to form nanorods, and a mixture of nanorods and nanospheres is obtained after a short aging time (typically < 3 h). The simulations capture the salient features of one-dimensional g...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.