Abstract

Gold nanorods have significant technological potential and are of broad interest to the nanotechnology community. The discovery of the seeded, wet-chemical synthetic process to produce them may be regarded as a landmark in the control of metal nanoparticle shape. However, the mechanism by which the initial spherical gold seeds acquire anisotropy is a critical, yet poorly understood, factor. Here we examine the very early stages of rod growth using a combination of techniques including cryogenic transmission electron microscopy, optical spectroscopy, and computational modeling. Reconciliation of the available experimental observations can only be achieved by invoking a stochastic, "popcorn"-like mechanism of growth, in which individual seeds lie quiescent for some time before suddenly and rapidly growing into rods. This is quite different from the steady, concurrent growth of nanorods that has been previously generally assumed. Furthermore we propose that the shape is controlled by the ratio of surface energy of rod sides to rod ends, with values of this quantity in the range of 0.3-0.8 indicated for typical growth solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.