Abstract

We consider self-trapping of 2D solitons in the model based on the Gross-Pitaevskii/nonlinear Schrodinger equation with the self-attractive cubic nonlinearity and a periodic potential of the optical-lattice (OL) type. It is known that this model may suppress the collapse, giving rise to a family of stable fundamental solitons. Here, we report essential dynamical features of self-trapping of the fundamental solitons from input configurations of two types, with vorticity 0 or 1. We identify regions in the respective parameter spaces corresponding to the formation of the soliton, collapse, and decay. A noteworthy result is the self-trapping of stable fundamental solitons in cases when the input norm essentially exceeds the collapse threshold. We also compare predictions of the dynamical variational approximation with direct numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.