Abstract

It is known that optical-lattice (OL) potentials can stabilize solitons and solitary vortices against the critical collapse, generated by cubic attractive nonlinearity in the 2D geometry. We demonstrate that OLs can also stabilize various species of fundamental and vortical solitons against the supercritical collapse, driven by the double-attractive cubic-quintic nonlinearity (however, solitons remain unstable in the case of the pure quintic nonlinearity). Two types of OLs are considered, producing similar results: the 2D Kronig-Penney “checkerboard”, and the sinusoidal potential. Soliton families are obtained by means of a variational approximation, and as numerical solutions. The stability of all families, which include fundamental and multi-humped solitons, vortices of oblique and straight types, vortices built of quadrupoles, and supervortices, strictly obeys the Vakhitov-Kolokolov criterion. The model applies to optical media and BEC in “pancake” traps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.