Abstract

Formamide (NH2CHO), being the smallest and fundamental building block of life (with a peptide linkage), has recently been able to attract much interests, in the field of astrochemistry, astrophysics, and astrobiology. In this work, using quantum mechanical computations, reactions between HCN and H2O, leading to the formation of formamide, have been analyzed. For the first time, an alternative and competing reaction channel, which proceeds via a geminal diol intermediate, for the formation of formamide, has been proposed. In this alternative channel, an extra water molecule (second H2O) was found to be acting as a reactant, in the second step of the reaction path. Effects of second H2O molecule in the reaction paths, providing catalytic assistance to the reaction or behaving like a spectator (concept is introduced for the first time for this reaction), have also been analyzed. Usefulness of spectator behavior is highlighted for the reactions happening on the rigid water-ice surfaces, where the water-ice may not be getting involved for any catalytic assistance. In light of catalytic assistances provided by the second H2O, prominent effects in reducing the barrier heights drastically (even for the second step of the reaction, the barrier height was found to be below the reactants), through a hydrogen relay transport mechanism, were observed. In addition to the mechanism studies, interstellar feasibilities of all the reaction channels and their significances are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.