Abstract

The structure and magnetic properties of the PrNi5 − xCux alloys have been studied in a composition range of 2.5 ≤ x ≤ 5. Single-phase solid solutions with a hexagonal structure of the CaCu5 type have been shown to be realized within this composition range. It has been found that upon the introduction of nickel into the Van Vleck paramagnet PrCu5 the ground state of the alloys with x ≤ 4.3 becomes ferromagnetic. All the compositions under study exhibit high magnetocrystalline anisotropy of the “easy-basal-plane” type. With allowance for the literature data available, a complete magnetic phase diagram of the PrNi5 − xCux system was constructed; it is characterized by two maxima in the compositional dependence of the Curie temperature. The earlier suggested model of the effect of local random crystal fields on the magnetic state of Pr3+ ions in alloys with low copper contents was shown to be applicable also for the explanation of magnetic properties of alloys with low nickel contents. The results of this study confirm the hypothesis about the determining role of local irregular crystal fields in the formation of the magnetic properties of the pseudobinary PrNi5 − xCux intermetallic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call