Abstract

All-polymer solar cells (all-PSCs) have been widely studied owing to their unique mechanical flexibility and stability. However, all-PSCs have a lower efficiency than small-molecule acceptor-based PSCs. In the work, a ternary quasi-all-polymer solar cell (Q-all-PSC) using a synergy of the ternary strategy and solid additive engineering is reported. The introduction of PC71BM can not only match the energy level of the photoactive materials with an improved open circuit voltage (VOC) of the ternary devices but also enhance photon capture, which can improve short circuit current density. It is found that there is effective charge transfer between PC71BM and PY-IT, which can form an electron transport channel and promote efficient charge transport. Moreover, the introduction of PC71BM made the PM6/PY-IT/PC71BM ternary blends more crystalline while slightly reducing phase separation, resulting in a suitable domain size. Importantly, by introducing a high dielectric-constant PFBEK solid additive as the fasten matrix, the Q-all-PSC's efficiency can reach 16.42%. This method provides a new idea for future research on all-polymer solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call