Abstract

Neonatally hemidecorticated rats show fairly normal reaching and grasping behaviors of the forelimb contralateral to the lesion at the adult stage. Previous experiments using an anterograde tracer showed that the corticospinal fibers originating from the sensorimotor cortex of the intact side projected aberrant collaterals to the spinal gray matter on the ipsilateral side. The present study used electrophysiological methods to investigate whether the aberrant projections of the corticospinal tract mediated the pyramidal excitation to the ipsilateral forelimb motoneurons and, if so, which pathways mediate the effect in the hemidecorticated rats. Electrical stimulation to the intact medullary pyramid elicited bilateral negative field potentials in the dorsal horn of the spinal cord. In intracellular recordings of forelimb motoneurons, oligosynaptic pyramidal excitation was detected on both sides of the spinal cord in the hemidecorticated rats, whereas pyramidal excitation of motoneurons on the side ipsilateral to the stimulation was much smaller in normal rats. By lesioning the dorsal funiculus at the upper cervical level, we clarified that the excitation was transmitted to the ipsilateral motoneurons by at least two pathways: one via the corticospinal tract and spinal interneurons and the other via the cortico-reticulo-spinal pathways. These results suggested that in the neonatally hemidecorticated rats, the forelimb movements on the side contralateral to the lesion were modulated by motor commands through the indirect ipsilateral descending pathways from the sensorimotor cortex of the intact side either via the spinal interneurons or reticulospinal neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call