Abstract
Stringent regulation of LH secretion from the pituitary is vital to ovarian function in mammals. Two rodent models of LH hypersecretion are the transgenic LHbeta-C-terminal peptide (LHbetaCTP) and estrogen receptor-alpha (ERalpha)-null (alphaERKO) mice. Both exhibit ovarian phenotypes of chronic anovulation, cystic and hemorrhagic follicles, lack of corpora lutea, interstitial/stromal hyperplasia, and elevated plasma estradiol and testosterone. Because ERbeta is highly expressed in granulosa cells of the ovary, we hypothesized the intraovarian actions of ERbeta may be necessary for full manifestation of phenotypes associated with LH hyperstimulation. To address this question, we generated female mice that possess elevated LH, but lack ERbeta, by breeding the LHbetaCTP and ERbeta-null (betaERKO) mice. A comparison of LHbetaCTP, alphaERKO, and betaERKO(LHCTP) females has allowed us to elucidate the contribution of each ER form to the pathologies and endocrinopathies that occur during chronic LH stimulation of the ovary. alphaERKO ovaries respond to elevated LH by exhibiting an amplified steroidogenic pathway characteristic of the follicular stage of the ovarian cycle, whereas wild-type(LHCTP) and betaERKO(LHCTP) females exhibit a steroidogenic profile more characteristic of the luteal stage. In addition, the hemorrhagic and cystic follicles of the LHbetaCTP and alphaERKO ovaries require the intraovarian actions of ERbeta for manifestation, because they were lacking in the betaERKO(LHCTP) ovary. In turn, ectopic expression of the Leydig cell-specific enzyme, Hsd17b3, and male-like testosterone synthesis in the alphaERKO ovary are unique to this genotype and are therefore the culmination of elevated LH and the loss of functional ERalpha within the ovary.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have