Abstract

It was known that properties of copper-indium-gallium-diselenide (CIGS) thin films were evidently affected by precursor nanoparticle-ink and sintering technology. The nanoparticles were fabricated by using a rotary ball-milling (RBM) technique. After RBM, the particle size of the agglomerated CIGS powder was smaller than 100 nm. The nanoparticle ink was printed onto a Mo/soda lime glass substrate and baked at a low temperature to remove solvents and to form a dry precursor. Crystallographic, morphological, and stoichiometric properties of films were then obtained by using the precursor CIGS samples sintered at various heating rates in a non-vacuum environment without selenization. Analytical results revealed that the 2-theta data of the sample sintered at a heating rate of 15 °C/s were the closest to the data on the JCPDS card for Cu(Ga0.3In0.7)Se2.0 because their angles were 26.8°, 44.5°, and 52.7°, respectively. In addition, analytical results indicated that the CIGS absorption layer prepared at a heating rate of 15 °C/s had a chalcopyrite structure and favorable compositions. For this sample, the mole ratio of Cu:In:Ga:Se was equal to 0.98:0.81:0.28:1.93, and related ratios of Ga/(In+Ga) and Cu/(In+Ga) were 0.26 and 0.90, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.