Abstract
The paper studies the possibility of forming composite metal-ceramic (Sv-08G2S-О-Al2O3) and metal-carbide (Sv-08G2S-О-TiC) electric arc sprayed coatings using a hardening phase in the form of powder particles in a free form. For this, a modernized cap of the spray head of an EM-14M electric arc spray gun was used, equipped with a unit for continuous powder feed supply. A laboratory batch of samples was obtained in various technological modes of spraying. Microstructures of the deposited coatings are investigated using a scanning electron microscope. It has been established that composite coatings are characterized by a lamellar structure and a rather low porosity from 8 to 12% (depending on the deposition mode and the hardening phase content), and phase particles of different shades are well differentiated in the structure. The phases were identified by their microhardness indicators. It has been established that the microhardness of the metal matrix (Sv-08G2S-О) is 1.88GPa, ceramic Al2O3 particles ‑ 17.1GPa, TiC particles‑ 31GPa. The influence of the technological parameters of spraying, namely: current, voltage and powder consumption on the content of the hardening phase in the structure of the composite electric arc coatings has been investigated. It was found that when using the maximum values of technological parameters (current 160A, voltage 35V and powder consumption 35 g/min), the maximum content of the hardening phase in the coatings is obtained: 10.3% Al2O3 in metal-ceramic and 25.6% TiC in metal-carbide. The significantly higher maximum TiC content in comparison with the Al2O3 content in composite coatings is explained by the high density of carbide and, as a consequence, the increased velocity of these particles in the high-temperature heterophase jet. Experimental studies of the influence of the content of the strengthening phase in composite coatings on their bond strength to the substrate have been carried out. It is shown that the maximum value of the bond strength of metal-ceramic coatings is 30 MPa and corresponds to the Al2O3 content of 8.7%. As for metal-carbide coatings, the maximum bond strength value of 32 MPa was obtained with a carbide phase content of 18.4%. At the same time, the bond strength of the convention coating sprayed of Sv-08G2S-О wire is 26 MPa. An increase in this characteristic for composite coatings is explained by the additional activation of the sprayed surface by unmelted solid particles of Al2O3 and TiC. It is shown that the decrease in bond strength with an increase in Al2O3 content to 10.3%, and TiC to 25.2% is explained by a significant decrease in the actual contact area of the coating with the substrate.
Highlights
The paper studies the possibility of forming composite metal-ceramic (Sv-08G2S-О-Al2O3) and metal-carbide (Sv08G2S-О-TiC) electric arc sprayed coatings using a hardening phase in the form of powder particles in a free form
As for metal-carbide coatings, the maximum bond strength value of 32 MPa was obtained with a carbide phase content of 18.4%
The bond strength of the convention coating sprayed of Sv-08G2S-О wire is 26 MPa
Summary
Об’єктом досліджень обрані електродугові металокерамічні та металокарбідні композиційні покриття, отримані шляхом розпилення дроту марки Св-08Г2С-О і порошків оксиду алюмінію Al2O3 та карбіду титану TiC на основу, виготовлену із вуглецевої конструкційної якісної сталі 45. Для напилення композиційних електродугових покриттів використовували установку КДМ-2, укомплектовану апаратом ЕМ-14М з модернізованим ковпаком розпилювальної голівки, що оснащений вузлом безперервної подачі порошку [10]. Підготовку поверхні зразків, безпосередньо перед напиленням, здійснювали за допомогою установки струменево-абразивної обробки марки 0267 «Ремдеталь». Оброблена поверхня сталевих пластин і зразків, призначених для дослідження мікроструктури та визначення міцності зчеплення покриттів з основою відповідно, після струменевоабразивної обробки мала сірувато-матовий відтінок. У даній роботі для визначення міцності зчеплення покриттів з основою використовували штифтовий метод, оскільки він дозволяє оперативно проводити випробування безпосередньо після їхнього нанесення на зразки (рис.1), які також виготовляли з вуглецевої конструкційної якісної сталі 45. Для отримання результатів міцності зчеплення покриттів з основою і виключення впливу їх пористості на дану характеристику напилення на одному і тому ж режимі виконували в один прохід на 5 зразків одночасно (5 зразків без наповнювача, 5 – з відповідним наповнювачем). Міцність зчеплення композиційних металокерамічних та металокарбідних покриттів з основою визначали на розривній машині УММ-5
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.