Abstract

The self-assembly of surfactant-based structures that rely for their formation on the combination of a thermodynamically controlled and a dissipative pathway is described. Adenosine triphosphate (ATP) acts as a high-affinity template and triggers assembly formation at low surfactant concentrations. The presence of these assemblies creates the conditions for the activation of a dissipative self-assembly process by a weak-affinity substrate. The substrate-induced recruitment of additional surfactants leads to the spontaneous formation of catalytic hotspots in the ATP-stabilized assemblies that cleave the substrate. As a result of the two self-assembly processes, catalysis can be observed at a surfactant concentration at which low catalytic activity is observed in the absence of ATP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.