Abstract

Rational design and controllable synthesis of metal-organic frameworks nanosheets is critical for electrochemical catalysis. Herein, a carnation-like ZIF-9 nanostructure made of nanosheets is grown on nickel foam (ZIF-9/NF) by a simple one-step solvothermal method, the morphology evolution and the electrocatalytic oxygen evolution properties have been investigated by controlling the solvothermal time. The binder-free ZIF-9-d/NF (60 h, solvothermal time is 60 h) electrode delivers efficient electrocatalytic oxygen evolution reaction activity with low overpotentials of 312 and 337 mV at 50 and 100 mA cm−2, respectively. Furthermore, ZIF-9-d/NF (60 h) exhibits excellent stability without obvious attenuation for at least 30 h at 200 mA cm−2. The excellent performances can be attributed to the combination of the highly exposed active sites in the ZIF-9-d nanosheets, as well as the effective electron conduction and mass transfer. This work provides much possibilities for ZIF-9 nanosheets as binder-free electrode for electrocatalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.