Abstract
Efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are the determinants of the realization of a hydrogen-based society, as sluggish OER and ORR are the bottlenecks for the production and utilization of H2, respectively. A Co complex of 5,15-bis(pentafluorophenyl)-10-(4)-(1-pyrenyl)phenylcorrole (1) bearing a pyrene substituent was synthesized. When it was immobilized on multiwalled carbon nanotubes (MWCNTs), the 1/MWCNT composite displayed very high electrocatalytic activity and durability for both OER and ORR in aqueous solutions: it catalyzed a direct four-electron reduction of O2 to H2O in 0.5 M H2SO4 with an onset potential of 0.75 V vs normal hydrogen electrode (NHE), and it catalyzed the oxidation of water to O2 in neutral aqueous solution with an onset potential of 1.15 V (vs NHE, η = 330 mV). Control studies using a Co complex of 5,10,15-tris(pentafluorophenyl)corrole (2) demonstrated that the enhanced catalytic performance of 1 was due to the strong noncovalent π–π inte...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.