Abstract

The potential energy surface (PES) for the formation of C7H7(+) from benzyl chloride and chlorotoluene ions was obtained by quantum chemical calculations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level. On the basis of the PES, the RRKM model calculations were carried out to predict the rate constants of the dissociations of the molecular ions of o-, m-, and p-chlorotoluene, all of which agreed well with previous experimental results. The kinetic analysis showed that the benzylium ion was the predominant product in the dissociations of the four isomeric molecular ions, below the thresholds of the formation of tolylium ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call