Abstract

Quinones may be formed metabolically or abiotically from environmental pollutants and polycyclic aromatic hydrocarbons (PAHs); many are recognized as toxicological intermediates that cause a variety of deleterious cellular effects including mutagenicity. The PAH-o-quinone, 1,2-naphthoquinone (1,2-NQ), may exert its genotoxic effects through interactions with cellular nucleophiles such as DNA, however, the mechanisms of 1,2-NQ adduct formation are still under investigation. With the aim to further understand these mechanisms, the chemical structures of adducts formed from the reaction of 2'-deoxyguanosine (dG) with 1,2-NQ under physiological conditions were investigated by liquid chromatography electrospray ionization tandem mass spectrometry and 1H NMR analyses. Results showed that 1,2-NQ underwent non-enzymatic oxidation to form a 1,2-NQ-epoxide which in turn formed at least four bulky adducts with dG, and these adducts were more likely to be formed under physiological conditions. A mechanism was proposed whereby hydration of 1,2-NQ to form unstable naphthohydroquinones and 2-hydroxy-1,4-naphthoquinone resulted in formation of hydrogen peroxide that oxidized 1,2-NQ. These results suggest that the genotoxicity of 1,2-NQ may not only be caused through oxidative DNA damage and adduct formation through Michael addition but also through non-enzymatic oxidative transformation of 1,2-NQ itself to form an intermediate PAH-epoxide which covalently binds to DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.