Abstract

In recent years, use of hepatocyte aggregates has led to development of a hybrid artificial liver support system (HALSS) that has high performance. However, in general, their thickness is 100 microm or more, and generation of a dead cell layer due to oxygen exhaustion inside the aggregates has been a universal problem. The present study proposes a novel organoid culture method with better performance than previous organoid culture methods by forming a sheet-shaped organoid (organoid-sheet) with a thickness of approximately 100 microm. The cell number of the organoid-sheet was maintained at approximately 75% of the initial number at 4 days of culture. On the other hand, that of a cylindrical organoid (cylindroid), which formed inside of a plasma separation hollow fiber with 285 microm inner diameter in our previous study, decreased to approximately 50% within 2 days. The ammonia removal rate of the cells in the organoid-sheet was higher than that of the cells in the cylindroid on the first day, but it decreased during the culture time. At day 15, the rate was reduced by almost 50% with respect to the value on the first day. The cells in the cylindroid displayed a lower ammonia removal rate. A significant difference was not observed between the albumin synthesis rates of the two cultures on the first day. However, over a period of time the cells in the organoid-sheet showed a higher albumin synthesis rate than cells in the cylindroid. As this novel organoid maintains these functions for at least 1 month, it is expected to be applied for the development of a HALSS with higher performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.