Abstract

Development of new hybrid materials having unique and unprecedented catalytic properties is a challenge for chemists, and heterogeneous-homogeneous hybrid catalysts have attracted much attention because of the preferable and exceptional properties that are highly expected to result from combination of the components. Base catalysts are widely used in organic synthesis as key materials, and a new class of base catalysts has made a large impact from academic and industrial viewpoints. Here, a principle for creating a new strong base by hybridization of homogeneous and heterogeneous components is presented. It is based on the modification of organic compounds with metal oxides by using the acid-base property of metal oxides. Based on kinetic and DFT studies, combination of CeO2 and 2-cyanopyridine drastically enhanced the basicity of 2-cyanopyridine by a factor of about 109 (∼9 by pKa (in CH3CN)), and the pKa was estimated to be ∼21, which locates it in the superbase category. 2-Cyanopyridine and CeO2 formed a unique adsorption complex via two interaction modes: (i) coordinative interaction between the Ce atom of CeO2 and the N atom of the pyridine ring in 2-cyanopyridine, and (ii) covalent interaction between the surface O atom of CeO2 and the C atom of the CN group in 2-cyanopyridine by addition of the lattice oxygen of CeO2 to the CN group of 2-cyanopyridine. These interactions established a new, strongly basic site of N- over the CeO2 surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.