Abstract

The shift of equilibrium by removing water with nitrile dehydrants is crucial for CeO2 -catalyzed synthesis of dialkyl carbonates from CO2 and alcohols. Two nitriles - 2-cyanopyridine and 2-furonitrile - were previously found as effective dehydrants, yet their detailed comparison as well as exploration of potential of 2-furonitrile remain insufficient. Herein, the performance of 2-cyanopyridine and 2-furonitrile was compared in the synthesis of various dialkyl carbonates. 2-furonitrile was found to be superior to 2-cyanopyridine in the synthesis of dialkyl carbonates from CO2 and bulky or long-chain (≥C3) alcohols. Namely, the yield of diisopropyl carbonate (up to 50 %) achieved using CeO2 and 2-furonitrile is comparable to or even higher than previously reported ones. Meanwhile, 2-cyanopyridine acted as a better dehydrant than 2-furonitrile in the synthesis of dimethyl carbonate and diethyl carbonate. The adsorption experiments and density functional theory calculations have indicated that the better performance of 2-furonitrile compared to 2-cyanopyridine in the synthesis of dialkyl carbonates from bulky or long-chain alcohols is due to the weaker interaction of 2-furonitrile with the CeO2 surface. Such weak interaction of 2-furonitrile offers a larger reaction field on the catalyst surface for both CO2 and alcohols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call