Abstract

Phosphorus recovery from wastewater is an effective method to alleviate the shortage of phosphorus resources. The biofilm phosphorus recovery process can realize simultaneous removal and enrichment of phosphorus in wastewater. In this study, a sequencing batch biofilm reactor was constructed to study the rapid phosphorus release and slow phosphorus release stages in the phosphorus recovery cycle. The relationship between high biofilm phosphorus storage capacity (Pbiofilm), phosphorus recovery solution concentration, phosphorus uptake-release behavior and carbon source consumption were explored. The increase in phosphorus recovery solution concentration promotes the elevation of Pbiofilm, which, conversely promotes phosphorus release in the next recovery cycle. In addition, the distinct phosphorus uptake-release characteristics of extracellular polymeric substances and cells were illustrated. This study provides a theoretical foundation to elevate the phosphorus recovery efficiency and reduce carbon source consumption in biofilm phosphorus recovery process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.