Abstract

Thermal oxides on the Ga-face of low defect density bulk gallium nitride (GaN) were controllably produced under varying conditions and subsequently analyzed. The thermal oxidation was performed in a dry oxygen atmosphere at different temperatures and different oxidation times. Each oxide layer was identified as the monoclinic β-Ga 2O 3 by a θ–2 θ X-ray diffraction (XRD) scan. Complementary Auger electron spectroscopy (AES) and high-resolution X-ray photoelectron spectroscopy (XPS) were also performed to study the chemical and electronic states of the oxide. The surfaces of the as-grown oxide and the GaN surfaces (after oxide removal) were studied using scanning electron microscopy (SEM). The roughness of both surfaces was found to increase with increasing oxidation temperature. Schottky diodes were fabricated on the GaN surfaces after oxide removal to further examine the surface quality. An excess reverse leakage current was found for Schottky diodes fabricated on GaN surfaces that were oxidized at 950 °C or 1000 °C, indicating possible surface decomposition at these two temperatures. The characteristics of wet and dry etching of the gallium oxide layer were also investigated. Finally, metal–oxide–semiconductor (MOS) capacitors were fabricated using thermally oxidized bulk GaN substrates. Current–voltage ( I– V) measurements showed a low reverse current of 1.5 pA at −10 V. The oxide breakdown field was determined to be 0.65 MV/cm. Capacitance–voltage ( C– V) measurements displayed a deep depletion feature, and the interface trap density near the conduction band was estimated to be in the low 10 11 eV −1 cm −2 range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.