Abstract

In this paper, a neural-dynamic optimization-based nonlinear model predictive control (NMPC) is developed for controlling leader–follower mobile robots formation. Consider obstacles in the environments, a control strategy is proposed for the formations which includes separation-bearing-orientation scheme (SBOS) for regular leader–follower formation and separation-distance scheme (SDS) for obstacle avoidance. During the formation motion, the leader robot shall track a desired trajectory and the desire leader–follower relationship can be maintained through SBOS method; meanwhile, the followers can avoid the collision by applying the SDS. The formation-error kinematics of both SBOS and SDS are derived and a constrained quadratic programming (QP) can be obtained by transforming the MPC method. Then, over a finite-receding horizon, the QP problem can be solved by utilizing the primal-dual neural network (PDNN) with parallel capability. The computation complexity can be greatly reduced by the implemented neural-dynamic optimization. Compared with other existing formation control approaches, the developed solution in this paper is rooted in NMPC techniques with input constraints and the novel QP problem formulation. Finally, experimental studies of the proposed formation control approach have been performed on several mobile robots to verify the effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.