Abstract
PurposeThe purpose of this study is the formation and growth of nanoscale intermetallic compounds (IMCs) when laser is used as a heat source to form solder joints.Design/methodology/approachThis study investigates the Sn/Cu and Sn-0.1AlN/Cu structure using laser soldering under different laser power: (200, 225 and 250 W) and heating time: (2, 3 and 4 s).FindingsThe results show clearly that the formation of nano-Cu6Sn5 films is feasible in the laser heating (200 W and 2 s) with Sn/Cu and Sn-0.1AlN/Cu system. The nano-Cu6Sn5 films with thickness of 500 nm and grains with 700 nm are generally parallel to the Cu surface with Sn-0.1AlN. Both IMC films thickness of Sn/Cu and Sn-0.1AlN/Cu solder joints gradually increased from 524.2 to 2025.8 nm as the laser heating time and the laser power extended. Nevertheless, doping AlN nanoparticles can slow down the growth rate of Cu6Sn5 films in Sn solder joints due to its adsorption.Originality/valueThe formation of nano-Cu6Sn5 films using laser heating can provide a new method for nanofilm development to realize the metallurgical interconnection in electronic packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.