Abstract

Chlorination by-products may be formed during pretreatment or posttreatment disinfection in reverse osmosis (RO) desalination systems, potentially posing health, aesthetic and ecological risks. To assess the formation and fate of by-products under different conditions likely to be encountered in desalination systems, trihalomethanes, dihaloacetonitriles, haloacetic acids, and bromophenols were analyzed in water samples from a pilot-scale seawater desalination plant with a chlorine pretreatment system and in benchscale experiments designed to simulate other feed water conditions. In the pilot plant, RO rejection performance as low as 55% was observed for neutral, low-molecular-weight by-products such as chloroform or bromochloroacetonitrile. Benchscale chlorination experiments, conducted on seawater from various locations indicated significant temporal and spatial variability for all by-products, which could not be explained by measured concentrations of organic carbon or bulk parameters such as SUVA 254. When desalinated water was blended with freshwater, elevated concentrations of bromide in the blended water resulted in dihaloacetonitrile concentrations that were higher than those expected from dilution. In most situations, the concentration of chlorination by-products formed from continuous chlorination of seawater or blending of desalinated water and freshwater will not compromise water quality or pose significant risks to aquatic ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call