Abstract
Based on the developed coupled model of electromagnetism, heat and solute transportation, the macrosegregation formation and effect of secondary cooling water ratio on macrosegregation degree in strand during round bloom continuous casting process have been investigated. The solute segregation degree fluctuates from a positive to a negative value with distance from strand surface in the initial solidified shell region within thickness of 20 mm. A negative segregation region in concave shape and an irregular positive segregation zone are presented in the fixed and loosened side of strand respectively due to the gravity and thermosolutal convection. As the secondary cooling water ratio decreases from 0.25 to 0.15 L kg− 1, the solidification ratio at final electromagnetic stirring (F-EMS) centre increases from 73.14 to 77.83%. For the steel grade of 50Mn casted by round bloom casting within diameter of 0.35 m, the optimal solidification ratio at F-EMS centre is 75.05%, where the radial centre crack and shrinkage cavity at strand cross-section are removed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have