Abstract

High-speed schlieren visualizations show that a composite reaction-shock cluster structure is formed in the last flame acceleration stage prior to detonation transition for ethylene/oxygen mixture in a narrow channel. The composite structure is bounded by a normal shock at the leading edge of the structure, and series of parallel oblique shocks interweave with reaction front on the other end in the cluster. Propagating velocity of the reaction front at the inception of the cluster is ∼ 45–50% of Chapman-Jouguet detonation velocity of the mixture. Reaction front accelerates rapidly after the formation of the reaction-shock cluster, and run into detonation in tens of microseconds except for very lean mixtures. The angle between the parallel oblique shocks in the cluster and the side wall, defined as ω-angle, is found to be constant for a specific mixture as the reaction wave propagates. Dependence of ω-angle on mixture equivalence ratio and channel size are investigated in the study. Analysis shows that DDT distance is linearly proportional to ω-angle, and an empirical correlation is derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.