Abstract

An instrumental technique has been developed which allows the concomitant measurement of the arrival times of both shock and reaction (flame) fronts in propagating detonations. A combination of fiber-optic probes and light detectors is used to monitor the arrival of the reaction front, whereas piezoelectric pressure gauges monitor the arrival of the pressure pulse from the preceding shock wave. Both signals provide the measurement of the detonation velocity; variance between shock and reaction front velocities implies nonstable detonation (growing or dying detonation) which can be attributed to variation in density, concentration, or homogeneity of the detonating media. This technique is straightforward in the case of pressed or cast formulations but presents difficulties when gas-phase or two-phase detonations are involved. The detonation of near-stoichiometric ethylene–air mixtures in a detonation-tube facility was used to refine the technique and calibrate the instrumentation. The technique was then used to characterize the detonation of two-phase aluminum powder–air mixtures of various concentrations. Compared to the 3-μs induction time between the shock and reaction fronts in the case of ethylene–air mixtures, the induction times for aluminum powder–air mixtures varied from about 1 to over 100 μs. The variation in induction time was attributed to several factors: extended heating time to ignition of the particles due to inhomogeneity of the two-phase mixtures; variation in particle size; and variable aluminum-oxide surface coating thickness. The concentration of aluminum powder in the air was monitored dynamically using instrumentation that related the concentration of aluminum to the attenuation of a laser beam through the mixture. A mean, or overall, value was also estimated by determining the mass flow rate and overall discharge time using photographic coverage. In the former case, in order to obtain meaningful signals for these high-concentration two-phase systems it was necessary to reduce the pathlength of the laser beam through the mixture to a small fraction of the total width of the tube. Hence, the observed concentration measurements did not necessarily reflect good homogeneity across the width of the tube. Nevertheless, with some modifications this technique can be exceptionally useful for this most difficult measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.