Abstract

Thin films made of formamidinium lead iodide (FAPbI3) perovskites prepared by a two-step sequential deposition method using various solvents for formamidinium iodide (FAI) - isopropanol, n-butanol and tert-butanol, were studied with the aim of finding a correlation between morphology and solvent properties to improve film quality. They were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and their photophysical properties were studied by means of absorption and photoluminescence (PL) spectroscopies. XRD patterns, absorption and PL spectra proved α-phase formation for all selected solvents. An excessive amount of PbI2 found in perovskite films prepared with n-butanol indicates incomplete conversion. Thin film morphology, such as grain and crystallite size, depended on the solvent. Using tert-butanol, thin films with a very large grain size of up to several micrometers and with preferred crystallite orientation were fabricated. The grain size increased as follows: 0.2-0.5, 0.2-1 and 2-5 µm for isopropanol, n-butanol and tert-butanol, respectively. A correlation between the grain size and viscosity, electric permittivity and polarizability of the solvent could be considered. Our results, including fabrication of perovskite films with large grains and fewer grain boundaries, are important and of interest for many optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.