Abstract

Formaldehyde (CH2O) adsorption on the anatase TiO2(101) surface was studied with a combination of experimental and theoretical methods. Scanning tunneling microscopy, noncontact atomic force microscopy, temperature-programmed desorption, and X-ray photoelectron spectroscopy were employed on the experimental side. Density functional theory was used to calculate formaldehyde adsorption configurations and energy barriers for transitions between them. At low coverages (<0.25 monolayer), CH2O binds via its oxygen atom to the surface 5-coordinated Ti atoms Ti5c (monodentate configuration). At higher coverages, many adsorption configurations with comparable adsorption energies coexist, including a bidentate configuration and paraformaldehyde chains. The adsorption energies of all possible adsorption configurations lie in the range from 0.6 to 0.8 eV. Upon annealing, all formaldehyde molecules desorb below room temperature; no other reaction products were detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.