Abstract

The adsorption of carbon monoxide on the anatase TiO2 (101) surface was studied with infrared reflection absorption spectroscopy (IRRAS), temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and density functional theory (DFT). The IRRAS data reveal only one CO band at ∼2181 cm–1 for both stoichiometric and reduced TiO2 (101) surfaces. From TPD, an adsorption energy of 0.37 ± 0.03 eV is estimated for the isolated molecule, which shifts to slightly smaller values at higher coverages. Combining STM imaging and controlled annealing of the sample confirms the adsorption energies estimated from TPD and the slight repulsive intermolecular interaction. CO molecules desorb from electron-rich, extrinsic donor defect sites at somewhat higher temperatures. Confronting the experimental results with DFT calculations indicates that the anatase (101) surface does not contain any significant concentration of subsurface oxygen vacancies in the near-surface r...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.