Abstract

Abstract Purpose Air traffic management system is a complex adaptive and safety critical system which requires considerable attention for its modelling and verification. Currently Air traffic control (ATC) systems are heavily dependent upon human intervention at airport causing accidents and delays because of failure of communication. The purpose of this study is to develop, plan, manage and verify aircrafts movement procedures at the airport surface that prevent delays and collisions. Methods The airport surface is decomposed into blocks and represented by the graph relation. The state space of the system is described by identifying all the possible components of the system. The ground and local controls monitor queues of the aircrafts moving from taxiway to take-off. It is insured that once an aircraft is inserted into a queue, it is eventually removed from it after the next queue has become available. The take-off procedure is provided using graph theory and Vienna Development Method Specification Language (VDM-SL) and analyzed using VDM-SL toolbox. Results Formal specification of graph-based model, taxiways, aircrafts, runways and controllers is provided in static part of the model. The state space analysis describing take-off algorithms is provided by defining optimal paths and possible operations in dynamic model expediting the departure procedure. The model is developed by a series of refinements following the stepwise development approach. Conclusions The delays at airport surface require effective safety and guidance protocols to control air traffic at the airport. In static model, the safety criteria are described in terms of invariants over the data types carrying critical information. The safety is insured by defining pre/post conditions in description of operations for changing state space of the system. Although the proposed study is focussed more on the safety component, however, the efficiency is not ignored.

Highlights

  • Air traffic control (ATC) system is highly a safety critical system because its failure may cause a huge loss in terms of deaths or financial losses

  • The detailed information, for example, wind speed and direction, aircraft type, aircraft weight, weather conditions which may change a runway configuration, in reality are not considered in defining the take-off procedure. Such simplifications are made because our objective is to describe a simple and abstract model which can be applied to any real world ATC system after refinement

  • Formal model using VDM‐SL Formal specification of the algorithm is described to achieve the objectives of expediting the traffic flow management for safe and efficient operation of the ATC system

Read more

Summary

Introduction

Introduction Air traffic control (ATC) system is highly a safety critical system because its failure may cause a huge loss in terms of deaths or financial losses. Air traffic management system (ATFM) is a complex adaptive system more precisely an example of a complex sociotechnical system. This is because each airport comprises of interactions between a. Because of a large increase in movement of population and a significant increase in air traffic, generation ATC systems are suggested to improve efficiency by not compromising at existing safety standards (Erzberger 2006). Modelling and development of safe and efficient ATC system being highly safety critical in nature has raised various research questions.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call