Abstract

Key assignment and key maintenance in encrypted networks of resource-limited devices may be a challenging task, due to the permanent need of replacing out-of-service devices with new ones and to the consequent need of updating the key information. Recently, Aragona et al. proposed a new cryptographic scheme, ECTAKS, which provides a solution to this design problem by means of a Diffie-Hellman-like key establishment protocol based on elliptic curves and on a prime field. Even if the authors proved some results related to the security of the scheme, the latter still lacks a formal security analysis. In this paper, we address this issue by providing a security proof for ECTAKS in the setting of computational security, assuming that no adversary can solve the underlying discrete logarithm problems with non-negligible success probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.