Abstract
Phase-change materials (PCMs) are of considerable scientific and technological interest in applications related to energy management and storage, especially as they pertain to residential or commercial construction and packaging. Most PCMs developed for these purposes consist of a crystallizable species encapsulated within an impermeable polymeric shell. Such encapsulants can then be strategically embedded throughout a construct to promote thermal stability in close proximity to the normal melting point of the encapsulated species. In this study, we introduce form-stable PCMs, which avoid the need for costly and inconvenient encapsulation and consist of commercial thermoplastic elastomer copolyesters selectively swollen with crystallizable fatty acids. Since the copolyester matrices endow the PCMs with solid-like characteristics even when swollen with liquid, we refer to this particular class of materials as phase-change elastomer gels (PCEGs). In this study, we explore the thermal characteristics of PCEG films wherein the copolyester grade, gel composition and fatty acid are all varied. Our results indicate that these PCEGs exhibit non-hysteretic thermal cycling, unaffected transition temperatures, and competitive latent transition heats. Relative to model and commercially available encapsulated PCMs, the form-stable PCEGs examined here afford an alternative capable of superior thermal performance and versatility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.